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Abstract. We derive a very general condition for a sense-preserving harmonic
mapping with dilatation a square to be injective in the unit disk D and to admit a
quasiconformal extension to the extended complex plane. The analysis depends
on geometric properties of an extension of the Weierstrass-Enneper lift to the
extended plane that glues the parametrized minimal surface to a complementary
topological hemisphere. The resulting topological sphere renders an entire graph
over the complex plane provided additional restriction on the dilatation are
satisfied. The projection results in the desired extension. Several corollaries are
drawn from the general criterion.

1. Introduction

The purpose of this paper is to derive injectivity criteria and sufficient condi-
tions for quasiconformal extensions of harmonic mappings defined in the unit disk
D. We borrow this classical theme from geometric function theory, where consid-
erable work can be found in the form of criteria that depend on the Schwarzian
derivative. The conditions we obtain here are expressed in terms of a Schwarzian
derivative for harmonic mappings, and can be considered a refinement of a recent
general result for the injectivity of the Weierstrass-Enneper lift found in [6], as
well as a generalization of the main result in [14]. We will appeal to a geometric
construction in [6] that sets up circle fibrations of R3 in domain and range that
are paired in a natural way by means of the lift (see also [14]). Aside from certain
extremal configurations, the Weierstrass-Enneper lifts satisfying the criterion in [6]
are injective in D, and admit a continuous extension the closed disk that remains
injective. In other words, the boundary of the parametrized minimal surface is a
simple closed curve. The fibration of space in the range allows for an extension of
the lift by reflecting the minimal surface across its boundary. The resulting topo-
logical sphere renders an entire graph over the complex plane provided additional
restrictions on the dilatation of the harmonic mapping are satisfied. This is the
heart of the present paper and requires estimating the differential of the reflection.

The author was partially supported by Fondecyt Grants #1150115, #1190830.
Key words: Harmonic mapping, minimal surface, Ahlfors’ Schwarzian, quasiconformal map-

ping, injectivity.
2000 AMS Subject Classification. Primary: 30C99, 30C62; Secondary: 31A05, 53A10.

1



2 MARTIN CHUAQUI

The projection of the graph onto C will result in the desired extension of the har-
monic mapping. As a byproduct, the harmonic mapping will be univalent in D,
and the explicit extensions obtained appear as natural generalizations of classical
conditions for holomorphic mappings ([19, 2, 4, 18, 3, 5], to mention some).

The paper is organized as follows. In the remainder of the Introduction we
give a brief account of the main facts about harmonic mappings and Weierstrass-
Enneper lifts. At the end of this section we will state the main result of this paper.
In Section 2, we will summarize the results from [6] that will be required and
will set up the extension of the lift as a homeomorphism of the extended complex
plane onto a topological sphere in R3 ∪ {∞}. In Section 3 we study the issue of
quasiconformality of the extension of the lift as a mapping from C into R3, leaving
the proof of the main theorem for Section 4. The final section will be devoted to
drawing various corollaries.

A planar harmonic mapping is a complex-valued harmonic function f(z), z =
x+ iy, defined on some domain Ω ⊂ C. If Ω is simply connected, the mapping has
a canonical decomposition f = h+g, where h and g are analytic in Ω and g(z0) = 0
for some specified point z0 ∈ Ω. The mapping f is locally univalent if and only if
its Jacobian |h′|2 − |g′|2 does not vanish. It is said to be orientation-preserving if
|h′(z)| > |g′(z)| in Ω, or equivalently if h′(z) 6= 0 and the dilatation ω = g′/h′ has
the property |ω(z)| < 1 in Ω.

According to the Weierstrass–Enneper formulas, a harmonic mapping f = h+ g
with |h′(z)| + |g′(z)| 6= 0 lifts locally to map into a minimal surface, Σ, described
by conformal parameters if and only if its dilatation ω = q2, the square of a
meromorphic function q. The Cartesian coordinates (U, V,W ) of the surface are
then given by

U(z) = Re{f(z)} , V (z) = Im{f(z)} , W (z) = 2 Im

{∫ z

z0

h′(ζ)q(ζ) dζ

}
.

We use the notation

f̃(z) =
(
U(z), V (z),W (z)

)
for the lifted mapping of Ω into Σ. The height of the surface can be expressed
more symmetrically as

W (z) = 2 Im

{∫ z

z0

√
h′(ζ)g′(ζ) dζ

}
,

since a requirement equivalent to ω = q2 is that h′g′ be the square of an analytic
function. The first fundamental form of the surface is ds2 = e2σ|dz|2, where the
conformal factor is

eσ = |h′|+ |g′| .
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The Gauss curvature of the surface at a point f̃(z) for which h′(z) 6= 0 is

(1.1) K = −e−2σ∆σ = − 4|q′|2

|h′|2(1 + |q|2)4
,

where ∆ is the Laplacian operator. Further information about harmonic mappings
and their relation to minimal surfaces can be found in [17].

For a harmonic mapping f = h + g with |h′(z)| + |g′(z)| 6= 0, whose dilatation
is the square of a meromorphic function, we have defined [10] the Schwarzian
derivative by the formula

(1.2) Sf = 2
(
σzz − σ2

z

)
,

where

σz =
1

2
(σx − iσy) .

Some background for this definition is discussed in Section 2. With h′(z) 6= 0 and
g′/h′ = q2, a calculation (cf. [10]) produces the expression

Sf = Sh+
2q

1 + |q|2

(
q′′ − q′h′′

h′

)
− 4

(
q′q

1 + |q|2

)2

.

The formula remains valid if ω is not a perfect square, provided that neither h′

nor g′ has a simple zero.

In our main result stated below, we consider a complete metric of negative
curvature eρ|dz| in D, and two generic conditions for the boundary ∂D at infinity
to be visible. These conditions (ULP) and (BPJ) are defined in Section 2, and
state, briefly, that geodesics have a unique limit point in ∂D, and can be chosen
to join arbitrary pairs of points on the boundary.

Theorem 1.1. Let f = h + ḡ be a harmonic mapping with dilatation ω = q2 the
square of a meromorphic function in D, and let eρ|dz| be a complete metric of
negative curvature in D satisfying (ULP) and (BPJ). Suppose that

(1.3)
∣∣Sf − 2

(
ρzz − ρ2

z

)∣∣+ e2σ|K| ≤ 2tρzz̄

for some 0 ≤ t < 1, that

(1.4) |ρz − σz| ≤ C
√
ρzz̄

for some constant C, and that

(1.5) sup
z∈D

√
|ω(z)| < 2s

1 +
√

1 + 4s2
, s =

1− t
2
√

2C
√
t
.
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Then f is injective and has a quasiconformal extension to C given by

(1.6) Ef (z) =


f(z) , z ∈ D

f(z∗) +
h′(z∗)

(ρ− σ)z(z∗)
+

g′(z∗)

(ρ− σ)z̄(z∗)
, z∗ =

1

z̄
, z /∈ D.

2. Weierstrass-Enneper Lifts, Circle Bundles and the Reflection

In this section, we collect various results from [6] that will be required in the
present paper. We shall consider metrics g1 = e2ρg0 in D conformal to the Eu-
clidean metric g0, required to be complete and of negative curvature. The general
criterion established there takes the following form for metrics of this type.

Theorem A. Let f be a harmonic mapping with dilatation ω = q2 the square of a
meromorphic function in D. Let g1 = e2ρg0 be a complete metric of non-positive
curvature. If

(2.1)
∣∣Sf − 2

(
ρzz − ρ2

z

)∣∣+ e2σ|K| ≤ 2ρzz̄

then the lift f̃ is injective in D.

The proof relies on an application of Ahlfors’ Schwarzian for curves and its in-
terplay with the (conformal) Schwarzian for the harmonic mapping. To be more
precise, injectivity follows from a general condition for curves to be simple estab-
lished in [7], and an adequate bound for the Schwarzian of the curves obtained

from the restriction of f̃ to arbitrary geodesics in D. The bound is guaranteed

by (2.1), and will hold for f̃ as well as for any Möbius shift T ◦ f̃ because of the
invariance of Ahlfors’ Schwarzian under the conformal group.

In order to study the behavior of the lift f̃ near the boundary ∂D it became
necessary to impose some generic conditions on the metric to ensure sufficient
control of the ends of geodesics. The conditions (ULP) and (BPJ) defined below
will be assumed to hold for the metric g1.

Definition 2.1. The metric g1 on D has the Unique Limit Point property (ULP)
if:

(a) Let z0 ∈ D. If γ(t), 0 ≤ t <∞ is a maximally extended geodesic starting at z0

then limt→∞ γ(t) exists (in the Euclidean sense). We denote it by γ(∞) ∈ ∂D.

(b) The limit point is a continuous function of the initial direction at z0.

(c) For any ζ ∈ ∂D there is a geodesic starting at z0 whose limit point is ζ.

We say a little more about part (c) in this condition. The assumption of negative
curvature implies that the limit point is a monotonic function of the initial direction
at the base point. Part (b) requires that it is continuous. It is conceivable that, for
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some metrics, all geodesics from a base point might tend to the same limit point
on the boundary, so the mapping from initial directions to points on ∂D would
reduce to a constant. We want to avoid this degenerate situation and be certain
that every boundary point is visible, so we include that fact in the statement of
(ULP). (ULP) is also important because it ensures that lifts satisfying Theorem A
admit a (spherically) continuous extensions to the closed disk.

Definition 2.2. The metric g1 on D has the Boundary Points Joined property
(BPJ) if any two points on ∂D can be joined by a geodesic which lies in D except
for its endpoints.

A lift satisfying Theorem A was called extremal if the extension to the closed
disk was not injective. It was shown in [6] that for extremal lifts equality had

to hold in (2.1) along a geodesic joining the points ζ1, ζ2 ∈ ∂D for which f̃(ζ1) =

f̃(ζ2). In particular, if for example, condition (2.1) is satisfied with strict inequality

everywhere then f̃ cannot be extremal.

A fundamental tool underlying the analysis is the function

uf̃ (z) =
√
eρ−σ ,

which becomes convex relative to g1 when (2.1) is in force [6, Lemma 4.1]. Convex-
ity is obtained from the estimates derived for Ahlfors’ Schwarzian, and it follows
from the invariance of this operator under the Möbius group that, even though

(T ◦ f̃)(D) will in general not minimal, the function uT◦f̃ associated with the con-

formal immersion T ◦ f̃ will remain convex.

We set up circle fibrations of space in domain and range, with a pairing induced

by the lift f̃ . As a general configuration, let B be a smooth, open surface in R,
and consider a family C(B) of Euclidean circles Cp indexed by p ∈ B, at most one
of which is a Euclidean line, having the properties:

(i) Cp is orthogonal to B at p and Cp ∩B = {p};
(ii) if p1 6= p2 then Cp1 ∩ Cp2 = ∅;
(iii)

⋃
p∈B Cp = R3 \ ∂B.

We regard the point at ∞ as lying on the line in C(B). We refer to p ∈ Cp as the
base point. If B is unbounded then there is no line in C(B), for a line would meet
B at its base point and at the point at infinity, contrary to (i).

The model case is B = D, with C0 = C(D) being the collection of circles orthog-
onal to the complex plane passing through z ∈ D and its reflection 1/z̄. In this
case, only the circle through the origin becomes a line. Based on the following
lemma, it was shown in [6] that such a bundle of circles could be set up in the

image with base B = f̃(D). The circles appear as the set of points q ∈ R3 where
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the Möbius inversion

T (w) =
w − q
||w − q||2

produces a critical point of the function uT◦f̃ at a specified point in D. One is

justified to limit the attention to inversions alone (instead of the entire class of
Möbius transformations) because the critical point is unchanged when T is just
affine. We will denote the above inversion by Iq.

Lemma A. Let f̃ satisfy ( 2.1) and let z0 ∈ D be fixed. Consider the set C = Cz0
of points q ∈ R3 for which uIq◦f̃ has a critical point at z0. Then

(i) C is a circle orthogonal to Σ at f̃(z0) with radius r(z0) =
eσ(z0)

2|∇ log uf̃ (z0)|
;

(ii) C is symmetric with respect to the tangent plane to Σ at f̃(z0);

(iii) (C \ {f̃(z0)}) ∩ Σ = ∅.

The family of circles Cz, z ∈ D, was shown to be a fibration of space with base
Σ, meaning in particular, that the circles are disjoint for different base points. The

extension of f̃ as a homeomorphism of C onto a topological sphere in 3-space will

will glue Σ to the surface Σ∗ obtained by intersecting the fibers Cz/{f̃(z)} with

the tangent plane to Σ at w = f̃(z). The construction is obviously continuous on
Σ, and from (ii), (iii) above, the point of intersection w∗ = R(w) lies outside Σ and
is diametrically opposite to w on Cz. The injectivity of the reflection is guaranteed
because the circles are pairwise disjoint. From (i) and based on the convexity of

uf̃ , it was shown that R is (spherically) continuous on ∂Σ. The extension of f̃
defined by

(2.2) Ẽf̃ (z) =

 f̃(z) , |z| ≤ 1

R(f̃(1
z̄
)) , |z| > 1

provides therefore a homeomorphism of C ∪ {∞} onto a topological sphere in
R3 ∪ {∞}.

In order to study the quasiconformal distortion of F̃ and later on, of its projection
onto C, we must derive explicit formulas for R = R(w). We will first determine
an equation defining a given circle Cz0 . Because

||D(Iq ◦ f̃)|| = ||f̃ − q||−2eσ ,

it follows that

2 log uIq◦f̃ = ρ− σ + 2 log ||f̃ − q|| ,
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hence the critical point condition on uIq◦f̃ is given by the equation

(2.3) ρz = σz +
1

||f̃ − q||2
(
〈f̃x, q − f̃〉 − i〈f̃y, q − f̃〉

)
,

where 〈 , 〉 denotes the Euclidean inner product. We seek the point w∗ = q satis-

fying (2.2) that lies in the tangent plane to Σ at f̃ . If we write

w∗ = f̃ + af̃x + bf̃y

we find that

a+ ib =
1

ρz − σz
.

Therefore

(2.4) w∗ = w +
αeσ

α2 + β2
X +

βeσ

α2 + β2
Y ,

where X = e−σf̃x, Y = e−σf̃y are unit tangent vectors to Σ, and α+ iβ = (ρ−σ)z̄.
We finally rewrite (2.3) purely in terms of quantities on Σ. We consider on Σ the
conformal metric λΣ|dw| defined by

(2.5) λΣ(f̃)eσ = eρ ,

so that f̃ : (D, eρ|dz|) → (Σ, λΣ|dw|) becomes an isometry. Then (2.3) translates
to

(2.6) R(w) = w + 2J(∇ log λΣ) ,

where J = I0 is the inversion centered at the origin and∇ is the Euclidean gradient
operator on Σ.

3. Quasiconformal Distortion

The purpose in this section is to study the quasiconformal distortion of the
reflection R. We will show that

m(w) ≤ ||DVR|| ≤M(w),

where supw∈Σ M(w)/m(w) is bounded by a quantity depending on t and C, and

DVR stands for the derivative of R direction V tangent to Σ at a given point.
Necessarily the analysis shifts to Σ and some of the geometric notions attached
to Σ as a surface in R3 with its induced Euclidean metric g0, e.g., the gradient
and the Hessian of a function, the covariant derivative and second fundamental
form, and the curvature. If V is a vector field on Σ we let DV be the Euclidean
covariant derivative on R3 in the direction V , applied to a function or a vector
field on Σ, and we let DV be the covariant derivative on Σ. If ψ is a function on
Σ then DV ψ = DV ψ = V ψ. The gradient of ψ is the vector field defined by

〈∇ψ, V 〉 = V ψ
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and its Hessian is the symmetric, covariant 2-tensor defined by

Hessψ(V,W ) = 〈DV∇ψ,W 〉.
If W is a vector field on Σ then

DVW = DVW + II(V,W )

where II(V,W ) is the second fundamental form of Σ.
Next, we must formulate the inequality (1.3) to one for functions defined on

the surface. This requires the full differential-geometric definition of the confor-
mal Schwarzian as a symmetric, traceless 2-tensor, and uses in particular a gen-
eralization of the chain rule for the Schwarzian. For a function ψ defined on a
2-dimensional Riemannian manifold (M,g) the Schwarzian tensor of ψ is

(3.1) Bg(ψ) = Hessg ψ − dψ ⊗ dψ −
1

2
(∆gψ − ||∇gψ||2g)g

where the Hessian, Laplacian, gradient, and norm are taken with respect to a
Riemannian metric g. The final term is the trace of Hessg ψ− dψ⊗ dψ, so the full
tensor is traceless. If f is a conformal mapping with conformal factor e2ψg then,
by definition,

Sgf = Bg(ψ) .

In the case of a harmonic map f and its lift

f̃ : (D,g1)→ (Σ,g0) ,

with conformal factor f̃ ∗(g0) = e2σ|dz|2 as before, we have

Sf = S f̃ = B(σ),

with respect to the Euclidean metric. In canonical coordinates, B(σ) is a matrix
of the form (

a −b
−b −a

)
,

where
a+ ib = 2(σzz − σ2

z)

was taken as the definition of the harmonic Schwarzian. Here, and below, when a
quantity is calculated with respect to the Euclidean metric we drop the subscript
g0.

The quantities defining Bg(ψ) which depend on the metric obey a certain gen-
eralized chain rule when the metric changes conformally. It reads, in one form,

Bĝ(ψ − ρ) = Bg(ψ)−Bg(ρ) , ĝ = e2ρg ,

and in terms of conformal mappings, say (M1,g)
φ−→ (M2,h)

ψ−→ (M3,k),

Sg(ψ ◦ φ) = φ∗(Shψ) + Sgφ .
From the last equation, if ψ and φ are inverse to each other then Sgφ = −φ∗(Shψ).
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Specializing to our case, we find the following. Recall from (2.5) the metric λ2
Σ g0

with λΣ ◦ f̃ = eρ−σ. Consider f̃ : (D,g1) → (Σ,g0) as a conformal mapping with

conformal factor e2(σ−ρ)g1. We take the Schwarzian tensor of f̃ with respect to g1:

Sg1 f̃ = Bg1(σ − ρ).

Similarly, if φ = f̃−1 then φ : (Σ,g0)→ (D,g1) is conformal with conformal factor
λ2

Σ. The Schwarzian tensor of φ is with respect to the Euclidean metric on Σ and

Sφ = B(log λΣ).

From the formulas above,

B(log λΣ) = Sφ = −φ∗Sg1 f̃ = −φ∗(Bg1(σ − ρ)) ,

while
Bg1(σ − ρ) = B(σ)−B(ρ) ,

because of the chain rule above.

On the other hand, φ : (Σ,g2)→ (D,g) is an isometry for g2 = λ2
Σ g0, thus

||B(log λΣ)||g2 = ||Bg1(σ − ρ)||g1 = e−2ρ||B(σ)−B(ρ)|| .
Since also

||B(log λΣ)||g2 = λ−2
Σ ||B(log λΣ)||

we find that
||B(log λΣ)|| = e−2σ||B(σ)−B(ρ)|| .

In the final term B(σ) is the harmonic Schwarzian while B(ρ) is represented by
2(ρzz − ρ2

z). Combining these with (1.3) we find

||B(log λΣ)||+ |K| = e−2σ|Sf − 2(ρzz − ρ2
z)|+ |K| ≤ 2te−2σρzz̄ = 2tλ2

Σe
−2ρρzz̄ .

We summarize these calculations in the following lemma.

Lemma 3.1. If f satisfies (1.3) then

(3.2) ||B(log λΣ)||+ |K| ≤ 2tλ2
Σe
−2ρρzz̄ .

We proceed with the computation of DVR using (2.6),

R = Id + 2J(∇ log λΣ),

and the formula for the differential of J

DJ(x) =
1

||x||4
(||x||2Id− 2Q(x)) ,

where Q(x) is the matrix (xixj) [1]. We have, first,

DVR = V + 2J ′(∇ log λΣ)(DV∇ log λΣ),

and also the relation

DV∇ log λΣ = DV∇ log λΣ + II(V,∇ log λΣ).
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Hence

DVR = V+
2

||∇ log λΣ||4
{
||∇ log λΣ||2DV∇ log λΣ − 2Q(∇ log λΣ)(DV∇ log λΣ)

}
.

At this point it is convenient to simplify the notation somewhat. Let

Λ = ||∇ log λΣ||, Q = Q(∇ log λΣ), II = II(V,∇ log λΣ) .

Furthermore,
Hess(log λΣ)(V,W ) = 〈DV∇ log λΣ,W 〉

so we identify the vector DV∇ log λΣ with the 1-tensor Hess(log λΣ)(V, · ) and write

H = DV∇ log λΣ .

The Schwarzian tensor will enter through the Hessian terms, but this is not imme-
diate. The expression for DVR is then given by

DVR = V +
2

Λ2

{
H − 2

Λ2
Q(H) + II − 2

Λ2
Q(II)

}
,

where it will be important to identify the parts tangent and normal to Σ.

From the definition,

[Q(∇ log λΣ)]ij = (∇ log λΣ)i(∇ log λΣ)j ,

hence for any vector X we have that

Q(X) = 〈∇ log λΣ, X〉∇ log λΣ

is always tangent to Σ. Finally, H is tangent to Σ while II is normal to Σ, and we
may write

(3.3) DVR = V +
2

Λ2
(W1 +W2) ,

where

(3.4) W1 = H − 2

Λ2
Q(H)− 2

Λ2
Q(II)

is tangent to Σ and

(3.5) W2 = II

is normal to it. It is interesting to note that the tangent planes to Σ and R(Σ) at
respective points will be the same if II = 0, that is, when K = 0.

To find the norm ||DVR||2 we use that Q is symmetric and that Q2 = Λ2Q.
Hence

〈Q(II), V 〉 = 〈II,Q(V )〉 = 〈∇ log λΣ, V 〉〈II,∇ log λΣ〉 = 0 .

With this, in expanding ||DVR||2 a number of terms then drop out and, at length,
we obtain

(3.6) ||DVR||2 = 1 +
4

Λ2
〈H,V 〉+

4

Λ4

{
||H||2 − 2〈Q(H), V 〉+ ||II||2

}
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where we have also used ||V || = 1.
Referring to the definition we have

B(log λΣ) = Hess(log λΣ)− d log λΣ ⊗ d log λΣ −
1

2
(∆ log λΣ − ||∇ log λΣ||2)g0 .

Evaluate B(log λΣ)(V, · ) and treat this 1-tensor as a vector, which, continuing the
pattern of notation, we will denote by B. With these abbreviations note that (3.2)
implies

(3.7) ||B||+ |K| ≤ 2tλ2
Σe
−2ρρzz̄ .

Next, in components the 2-tensor d log λΣ⊗ d log λΣ is exactly Q(∇ log λΣ), which
we have denoted by Q. Finally we write

µ =
1

2
(∆ log λΣ − ||∇ log λΣ||2) =

1

2
(∆ log λΣ − Λ2) .

for the trace. In these terms

H = B +Q(V ) + µV.

and in (3.6),

〈H,V 〉 = 〈B, V 〉+ 〈Q(V ), V 〉+ µ ,

||H||2 = ||B||2 + Λ2〈Q(V ), V 〉+ µ2 + 2〈B,Q(V )〉+ 2µ〈B, V 〉+ 2µ〈Q(V ), V 〉 ,

〈Q(H), V 〉 = 〈H,Q(V )〉 = 〈B,Q(V )〉+ Λ2〈Q(V ), V 〉+ µ〈Q(V ), V 〉 .
Substitution results in a quite compact expression:

||DVR||2 =
4

Λ4

{
||B +

1

2
(∆ log λΣ)V ||2 + ||II||2

}
=

4

Λ4

{
||W1||2 + ||W2||2

}
.

This is the penultimate form. The final step, to bring in the inequality (3.7) for
the Schwarzian, is to introduce the curvature.

The curvature of Σ with the metric λ2
Σg0 is−4e−2ρρzz̄ since (Σ, λ2

Σ g0) is isometric
to (D, λD|dz|2). For the curvature K ≤ 0 of Σ as a minimal surface one obtains

∆ log λΣ = 4λ2
Σe
−2ρρzz̄ − |K|.

Hence

(3.8) ||DVR||2 =
4

Λ4

{
||B − 1

2
|K|V + 2λ2

Σe
−2ρρzz̄V ||2 + ||II||2

}
.

We want to bound this from above and below.

To obtain a lower bound we drop the term ||II||2 and use (3.7):

||DVR|| ≥
2

Λ2
||B − 1

2
|K|V + 2λ2

Σe
−2ρρzz̄V ||
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≥ 2

Λ2

{
2λ2

Σe
−2ρρzz̄ − || −B +

1

2
|K|V ||

}

(3.9) ≥ 2

Λ2

{
2λ2

Σe
−2ρρzz̄ − ||B|| −

1

2
|K|
}
≥ 4(1− t)λ

2
Σ

Λ2
e−2ρρzz̄ .

To obtain an upper bound we have to estimate the term ||II||. On a minimal

surface we always have II(X, Y ) ≤
√
|K|||X|| ||Y ||, and so for our case

||II|| = ||II(V,∇ log λΣ)|| ≤
√
|K| ||∇ log λΣ|| =

√
|K|Λ.

We need estimates for each of the factors on the right, and this is where we use
(1.4), namely that

|σz − ρz| ≤ C
√
ρzz̄ .

An inequality for the curvature follows simply from dropping the positive ||B||
term in (3.7), giving

|K| ≤ 2tλ2
Σe
−2ρρzz̄.

Next, from log(λΣ ◦ f̃) = log λD − σ and the bound on |σz − ρz| we have

eσΛ = eσ||∇ log λΣ(f̃(z))|| = 2|σz − ρz| ≤ 2C
√
ρzz̄ .

Multiplying through by e−σ brings back λΣ on the right:

Λ ≤ 2CλΣ

√
e−2ρρzz̄ .

With this,

(3.10) ||II|| ≤
√
|K|Λ ≤ 2

√
2tCλ2

Σe
−2ρρzz̄ .

Back to the equation (3.8) for ||DVR||2, we have

||DVR|| ≤
2

Λ2

{
||B − 1

2
|K|V + 2λ2

Σe
−2ρρzz̄V ||+ ||II||

}
≤ 2

Λ2

{
||B||+ 1

2
|K|+ 2λ2

Σe
−2ρρzz̄ + ||II||

}
≤ 4

(
1 + t+

√
2tC

) λ2
Σ

Λ2
e−2ρρzz̄ .

Combining the upper and lower bounds for ||DVR|| gives

(3.11)
max||V ||=1 ||DVR||
min||V ||=1 ||DVR||

≤ 1 + t+
√

2tC

(1− t)
.

This shows that R is quasiconformal as a mapping from Σ to its reflection Σ∗.

The extension of f̃ to a mapping Ẽf̃ : C −→ Σ ∪ Σ∗ is as in (2.2). It, too, is
quasiconformal with the same bound for the distortion.
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4. Quasiconformal Extension of Planar Harmonic mappings

In this section we consider the problem of injectivity and quasiconformal exten-
sion for the planar harmonic mapping f = h+ ḡ under the assumption that its lift

f̃ satisfies the hypotheses in Theorem 1.1. The method will be simply to project
from Σ∪Σ∗ to the plane, and requires restricting the dilatation as in Theorem 1.1;
the reward is the similarity of the resulting extension of the planar map with the
classical conditions.

Lemma 4.1. Suppose that f = h+ḡ is locally injective with dilatation ω the square

of an analytic function, and that f̃ satisfies (1.3)-(1.6). If ω satisfies

(4.1) sup
z∈D

√
|ω(z)| < 2s

1 +
√

1 + 4s2
, s =

1− t
2
√

2C
√
t

then Σ∗ is locally a graph.

Proof. Fix a point w = f̃(z) on Σ. Let ϑ be the angle of inclination with respect
to the vertical of the tangent plane Tw(Σ). From the formulas for the components

of f̃ , i.e., the formulas for the Weierstrass-Enneper lift, see [17], one can show that

(4.2) tanϑ =
2
√
|ω(z)|

1− |ω(z)|
.

For V a unit tangent vector to Σ at w we consider the tangential and normal
components DẼf̃ (V )> and DẼf̃ (V )⊥ of DẼf̃ (V ), expressed by the equation (3.3),

(3.4) and (3.5). Then the angle of inclination of the tangent plane TR(w)(Σ
∗) to

Σ∗ at R(w) is

ϑ+ tan−1
||DẼf̃ (V )⊥||
||DẼf̃ (V )>||

.

The surface Σ∗ will be locally a graph if this angle is < π/2, and using (4.2) this
condition can be written

(4.3)
2
√
|ω(z)|

1− |ω(z)|
‖DẼf̃ (V )⊥‖
‖DẼf̃ (V )>‖

< 1.

Using (3.9) and (3.10) that estimate ||DVR|| from below and ||II|| from above, the
requirement becomes

2
√

2C

√
|ω|

1− |ω|

√
t

1− t
< 1 ,

which will hold when√
|ω(z)| < 2s

1 +
√

1 + 4s2
, s =

1− t
2
√

2C
√
t
.

�
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We are finally in position to prove Theorem 1.1.

Proof. Without loss of generality we can assume that the unique critical point of

U f̃ is the origin. Let Π: R3 → C be the projection Π(x1, x2, x3) = x1 + ix2. We
know that Σ ∪ Σ∗ is locally a graph over C, and hence the mapping

Ef (ζ) =

{
f(ζ), ζ ∈ D,
(Π ◦ R)(f̃(ζ∗)), ζ 6∈ D

is locally injective.
Locating the critical point of uf̃ at the origin implies that Ef (z)→∞ as |z| →
∞. By the monodromy theorem we conclude that Ef is a homeomorphism of
C. In particular, the underlying harmonic mapping f is injective. Moreover, the
assumption on ω implies that the inclinations of both Σ and Σ∗ are bounded
away from π/2, making the projection Π quasiconformal. Since the reflection R is
quasiconformal, so is Ef .

Let us verify that Ef has the stated form. For z ∈ D we have that Π(f̃) = f , as
claimed. For points outside D we recall (2.6) for the reflection

R = f̃ + 2J(∇ log λΣ) ,

so that

Π(R) = f +
2

|∇ log λΣ|2
J(∇ log λΣ) .

With the notation X = e−σf̃x, Y = e−σf̃y used in (2.4) we have that

∇ log λΣ = X(log λΣ)X + Y (log λΣ)Y = e−σ(ρ− σ)xX + e−σ(ρ− σ)yY ,

so that

|∇ log λΣ| = e−2σ
(
[(ρ− σ)x]

2 + [(ρ− σ)y]
2) = 4e−2σ |(ρ− σ)z|2 ,

and

Π(∇ log λΣ) = e−2σ ((ρ− σ)xfx + (ρ− σ)yfy) = 2e−2σ
(
(ρ− σ)zh

′ + (ρ− σ)zg′
)
.

Putting these formulas together gives the desired result. �

5. Corollaries

The purpose of this section is to draw some corollaries from our main result by
considering particular instances of the background metric eρ|dz|. For some of the
applications we will use the following extension of Lemma 4 in [14].

Lemma 5.1. Let f = h + ḡ be a harmonic mapping defined in D with dilatation
ω = q2 for some meromorphic q. If for some constant A

(5.1) |Sf | ≤ 2A

(1− |z|2)2
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then

(5.2)

∣∣∣∣σz − z̄

1− |z|2

∣∣∣∣ ≤ √1 + A

1− |z|2
.

Proof. We briefly outline the proof and refer the reader to [14] for further details.
If we let τ = |σz| then one can show from (5.1) that

|τz| ≥ τ 2 − A

(1− |z|2)2
.

We first prove the desired inequality at z = 0, that is, that τ(0) ≤
√

1 + A. If
not, then |τz|(0) > 0 and we can consider an integral curve γ to ∇τ starting at the
origin. If v(t) = τ(γ(t)), t an arclength parameter, then

v′ ≥ v2 − A

(1− |γ(t)|2)2
≥ v2 − A

(1− t2)2
.

Since the function y = y(t) satisfying

y′ = y2 − A

(1− t2)2
, y(0) = a

become infinite before time t = 1 when a >
√

1 + A, a comparison gives the same
for v, a contradiction. This proves the estimate at the origin, and the general case
follows from linear invariance. �

For all our corollaries below, the choices of a complete conformal metric eρ|dz|
will satisfy conditions (ULP) and (BPJ) in light of Theorem 7 in [8]. The particular
instance of that theorem we will require here to conclude both conditions is that
ρr →∞ as |z| → 1 and |ρθ| remains bounded.

Corollary 5.2. Let f = h+ ḡ be a harmonic mapping defined in D with dilatation
ω = q2 for some meromorphic q, and suppose that

(5.3)

∣∣∣∣Sf − 2c(c− 1)z̄2

(1− |z|2)2

∣∣∣∣+ e2σ|K| ≤ 2tc

(1− |z|2)2

for some 0 ≤ t < 1, c > 1, and that

(5.4) sup
z∈D

√
|ω(z)| < 2s

1 +
√

1 + 4s2
, s =

1− t
2
√

2C
√
t
,

where C = (c+
√

1 + c2)/
√
c. Then f is injective and has a quasiconformal exten-

sion to C. given by

Proof. We apply the main theorem to the metric given by ρ = −c log(1 − |z|2).
Because c > 1 the metric is complete. Straightforward computations show that
(1.3) reduces to (5.3). We observe that condition (1.4) is met automatically for C
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as stated in the corollary. This is so because, by the triangle inequality, the bound
on the Schwarzian implies that

|Sf | ≤ 2c(c− 1) + 2tc

(1− |z|2)2
≤ 2c2

(1− |z|2)2
,

and the bound required in (1.4) follows now from Lemma 5.1 and the triangle
inequality. This corollary can be considered a generalization of criteria obtained
by Ahlfors in [2]. �

Corollary 5.3. Let f = h+ ḡ be a harmonic mapping defined in D with dilatation
ω = q2 for some meromorphic q, and suppose that

(5.5) 4

∣∣∣∣ zσz
1− |z|2

∣∣∣∣+ e2σ|K| ≤ 2t

(1− |z|2)2

for some 0 ≤ t < 1, and that

(5.6) sup
z∈D

√
|ω(z)| < 2s

1 +
√

1 + 4s2
, s =

1− t
2
√

2
√
t
.

Then f is injective and has a quasiconformal extension to C.

Proof. We will show that the family of dilations fr(z) = f(rz), r < 1 are injective
for in D and admit quasiconformal extensions with uniformly bounded distortion.
A subsequence of these extension will converge to the desired quasiconformal map-
ping, giving in passing the injectivity of f . For fixed r < 1 we consider the metric
eρ|dz| given by ρ = σr − log(1− |z|2), where eσr is the conformal factor associated
with the lift of fr. Then eρ|dz| is a complete metric of negative curvature, and
(1.3) in Theorem 1.1 becomes

4(1− |z|2) |rzσz(rz)|+ 4r2(1− |z|2)2σzz̄(rz) ≤ 2t ,

which follows from (5.6) (evaluated ar rz) because 1 − |z|2 ≤ 1 − |rz|2. We also
observe that condition (1.4) is met for the mapping fr and the specified value of
C because |σz| ≤ (t/2)(1 − |z|2)−1 ≤ (1/2)(1 − |z|2)−1. The bounds on ||ωr||∞
will also stay away from the critical value 2s/(1 +

√
1 + 4s2), and we conclude

that each fr is injective in D and has a quasiconformal extension with uniformly
bounded distortion. A convergent subsequence of these mappings will converge to
the desired extension. �

One of the motivation of the present paper was to be able to obtain planar
extensions of harmonic mappings satisfying criteria more general than what would
correspond to the classical Nehari condition

|Sf | ≤ 2

(1− |z|2)2
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for holomorphic f . Soon after discovering this criterion, Nehari found a family of
new criteria involving a positive, continuous, even function p = p(x) defined for
x ∈ (−1, 1) for which

(i) (1− x2)2p(x) is non-increasing on [0, 1);

(ii) the equation u′′ + pu = 0 is disconjugate, that is, non trivial solutions can
vanish at most once in (-1,1).

Such a function will be called a Nehari function, for which Nehari proved

|Sf | ≤ 2p(|z|)
was a sufficient condition for the univalence of f . The choice p(x) = (1 − x2)−2

recovers the first case, while the choices p(x) = 2(1 − x2)−1 and π2/4 yield the
interesting cases

|Sf | ≤ 4

(1− |z|2)
and |Sf | ≤ π2

2
.

Let λ = limx→1−(1 − x2)2p(x). Then 0 ≤ λ ≤ 1 and λ = 1 if and only if p(x) =
(1− x2)−2.

In [12] it was shown that

|Sf |+ e2σ|K| ≤ 2p(|x|)

implied the injectivity of the lift f̃ of a harmonic mapping f defined in D with
dilatation a square. Our purpose will be to establish injectivity of f itself and a
quasiconformal extension when

(5.7) |Sf |+ e2σ|K| ≤ 2µp(|z|) ,
for µ < 1. The case p = (1−x2)−2 was the subject of the paper [14], and therefore
we will assume now that λ < 1. Choosing an appropriate complete conformal
metric in Theorem 1.1 requires some preparation.

Let u = u(x) be the solution of

u′′ + pu = 0 , u(0) = 1 , u′(0) = 0 .

Because u is even, it follows from the assumption of disconjugacy that u must
remain positive on (−1, 1). Note also that u is decreasing on [0, 1), and gives rise
to the (extremal) function

F (x) =

∫ x

0

u−2(y)dy

that solves SF = 2p, F (0) = 0, F ′(0) = 1, F ′′(0) = 0. The initial candidate for the
metric is

(5.8) u−2(|z|)|dz| ,
which will be always of negative curvature but will fail to be complete when
F (1) <∞. In Lemma 3 [9] it was shown that in this case there exists a maximal
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value τ0 > 1 such that τ0p remains a Nehari function for which the new extremal
becomes infinite at x = 1. Because (5.7) trivially implies the same inequality for
τ0p replacing p, there is no loss of generality in assuming that the metric in (5.8)
is complete. One can also see that for eρ = u−2(|z|) one has

2ζ2(ρzz − ρ2
z) = −A(|z|) + p(|z|) , 2ρzz = A(|z|) + p(|z|) ,

where ζ = z/|z| and

A(x) =

(
u′(x)

u(x)

)2

− 1

x

u′(x)

u(x)
.

The inequality (1.3) in Theorem 1.1 would then read

(5.9)
∣∣ζ2Sf + A(|z|)− p(|z|)

∣∣+ e2σ|K| ≤ t(A(|z|) + p(|z|)) .

Nevertheless, a second issue has to be resolved, namely that for given µ < 1, (5.7)
will not imply (5.9) for any t < 1 if A/p → ∞ as x → 1. It was shown in [9,
Lemmas 2, 4] that A(x) ≥ p(x) in the complete case, and that the following limits
exist:

(5.10) L = lim
x→1−

A(x)

p(x)
=

(1 +
√

1− λ)2

λ
,

(5.11) 2β = − lim(1− x2)
u′(x)

u(x)
= 1 +

√
1− λ .

Note that L > 1 because λ < 1 and that L = ∞ precisely when λ = 0. Observe
also that β > 1/2. In order to overcome the difficulty that arises when L =∞ one
can perturb the compete metric (5.8) to

(5.12) u−2α(|z|)|dz| ,

for α < 1 to be chosen appropriately. The resulting terms Aα, pα are given by

Aa = α2

(
u′

u

)2

− α

x

u′

u
,

pα = αp+ α(1− α)

(
u′

u

)2

.

If the original limit L =∞, one will now have

lim
x→1−

Aα(x)

pα(x)
=

α

1− α
> 0 ,

which ensures that

l = inf
x∈[0,1)

Aα(x)

pα(x)
> 0 .
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Through Lemmas 5, 6 in [9] it was shown that there exists α0 < 1 close enough so
that for all α ∈ [α0, 1) the perturbed metric is complete, Aα(x) ≥ pα(x), and

(5.13) t = sup
x∈[0,1)

2µp(x) + Aα(x)− pα(x)

Aα(x) + pα(x)
= 1− 2µl

1 + l
< 1 .

With this, we can finally state:

Corollary 5.4. Let f = h+ ḡ be a harmonic mapping defined in D with dilatation
ω = q2 for some meromorphic q, and let p be a Nehari function. Then for any
0 ≤ µ < 1 there exists c = c(p, µ) > 0 such that

(5.14) |Sf |+ e2σ|K| ≤ 2µp(|z|)
and

(5.15) sup
z∈D
|ω(z)| ≤ c(p, µ)

imply that f is injective in D and admits a quasiconformal extension.

Proof. The proof will show how the constant c(p, µ) is obtained. As we have seen,
we may assume that the metric (5.8) is complete. If the limit L is finite we consider
Theorem 1.1 and the choice of the unperturbed metric (5.8). Then (1.3) is given
by ∣∣ζ2Sf + A(|z|)− p(|z|)

∣∣+ e2σ|K| ≤ t (A(|z|) + p(|z|)) ,
which we claim is implied by (5.16) if t = t(µ) is chosen appropriately. Indeed, we
have that ∣∣ζ2Sf + A(|z|)− p(|z|)

∣∣+ e2σ|K| ≤ |Sf |+ e2σ|K|+ A− p
≤ (2µ− 1)p+ A ≤ t(A+ p)

if we choose t so that

t = 1− 2µl

1 + l
.

We need to ensure that conditions (1.4) and (1.5) are met. As for (1.4), observe
that

|ρz| = 2

∣∣∣∣u′u
∣∣∣∣ ≤ 2

√
A+ p = 2

√
ρzz̄ .

On the other hand since

|Sf | ≤ |Sf |+ e2σ|K| ≤ 2µp(|z|) ≤ 2µp(0)

(1− x2)2

we have from Lemma 5.1 that

|σz| ≤
1 +

√
1 + p(0)

1− x2
.

But
inf

x∈[0,1)
(1− x2)2(A(x) + p(x)) = η > 0
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because p(0) > 0 and (5.11), therefore

|ρz| = 2

∣∣∣∣u′u
∣∣∣∣ ≤ 2

η

√
ρzz̄ .

The constant η = η(p). We conclude that (1.4) is satisfied with

C = 1 +
√

1 + p(0) +
2

η
.

The constant c = c(p, µ) is obtained now from condition (1.5).
If L =∞ we need to consider (5.14) for α close but smaller than 1. With that,

the rest of the argument is the same.
�

A particular case we would like to highlight is when p = π2/4, so that (5.7)
becomes

|Sf |+ e2σ|K| ≤ µ
π2

2
.

The unperturbed metric is given by the conformal factor

eρ = u−2(|z|) = sec2
(π

2
|z|
)
,

for which L = ∞. For the perturbed metric with conformal factor eαρ, α < 1,
Theorem 1.1 takes the form

|Sf + Aα − pα| |+ e2σ|K| ≤ t(Aα + pα) ,

with a quasiconformal extension given by

Ef (z) = f(z)

when z ∈ D and

Ef (z) = f(z∗)+
2|z∗|h′

απz̄∗

2
tan
(π

2
|z∗|
)
− |z∗||h′|
|h′|+ |g′|

h′′

h′

+
2|z∗|ḡ′

απz∗

2
tan
(π

2
|z∗|
)
− |z∗||g′|
|h′|+ |g′|

g′′

g′

with z∗ = 1/z̄, when z /∈ D.
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